Absorption of Sulfur Dioxide in Water with High Salinity

IRINA PINCOVSCHI¹, CRISTINA MODROGAN^{2*}

¹University Politehnica of Bucharest, Faculty of Hydraulic Machinery and Environmental Engineering, Department of Hydraulics, 1-7 Polizu Str., 011061, Bucharest, Romania

² University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science, Department Analytical Chemistry and Environmental Engineering, 1-7 Polizu Str., 011061, Bucharest, Romania

Understanding the absorption behaviour of sulphur dioxide in aqueous electrolyte solutions is of major interest for the design of flue gas desulphurization processes, as for example wet flue gas desulphurization of coal fired power plants or municipal solid waste incineration plants. In the present paper the influence of the water salinity on SO₂ absorption is studied. The SO₂ absorption was performed in equilibrium condition. The variation of marine solubility from 10 g/L to 40 g/L determines the variation of SO₂ concentration in water from 2.6 mol/L to about 3.2 mol/L. In consequence, the variation of water salinity in these limits can determine a quite big difference of water pollution.

Keywords: SO,, salinity, desulphurization processes

The importance of studied problem consists in the fact that the majority of planet water is of high salinity varying between 12 g/L (Black Sea) and 35 g/L (Atlantic Ocean). It results that the pollution of such waters with SO₂ is quite different, varying in large limits [1].

Sulfur dioxide is removed from flue gas by absorption processes because of its toxicity. In fossil-fired power plants at the coast, alkaline seawater is often used as a scrubber agent to chemisorb the acid SO₂. In arid regions frequently energy-intensive seawater desalination plants which produce fresh water and brine as a waste product are connected with the power plants. The brine is able to substitute seawater in flue gas desulfurization. However, for the design of such a process, systematic investigations of the influence of ions in the brine on SO₂ absorption are lacking. Hence, a reliable process modeling and prediction of the brine's absorption capacity are not possible. Several working groups have modeled the solubility of SO, in sea water on the basis of available models. Abdulsattar [3] has modeled the SO, solubility in seawater in a temperature range from 10 to 25 °C. The activity coefficients of the ions were calculated from the Bromley model using an extended Debye-Hückel term [4], and the activity coefficients of the molecularly dissolved components were determined on basis of the coefficients of Rabe and Harris [5] as well as Garrels and Christ [6]. Al-Enezi [7] investigated the solubility of SO₂ in sea water solutions at salinities from 0 to 65 g/kg, temperatures between 10 °C and 40 °C and constant SO₂ partial pressure of 22.4 Pa. The applied model is based on the approach of Abdulsattar [3] and includes an extended Debye–Huckel term to describe the activity coefficients. As a result, a quadratic equation of the SO, solubility was fitted as a function of temperature and salinity. However, the equation allows no extrapolations to other SO, partial pressures and is therefore limited in their applicability [8-17].

Sulfur dioxide affects the environment in different ways, like direct absorption in water, acid rains and health damages [2, 18-19]. The concentration of SO, in residual gases emitted by thermal power plants is about 0.15-0.25%. The SO₂ concentration can to attain bigger values, like in metalurgical ones (1-2 %).

In contrast to the work cited above, in this work the absorption of SO_2 in fundamental binary systems (water + 1 salt) present in seawater was experimentally

investigated and modeled first to determine reliable model parameters for the main components of the electrolyte systems seawater.

Theoretical approach

The SO₂ absorption in water is a phisicochemical process developped as follows:

$$SO_2 + H_2O \xleftarrow{K_1} H_2SO_3 \xleftarrow{K_2} H^+ + HSO_3^- \xleftarrow{K_3} H^+ + SO_3^{--}$$
 (1)

In the equation (1) the proton H^+ represents the strongly hidrated ion H_0O^+ .

K₁, K₂ and K₃ representing the equilibrium constants:

$$\mathbf{K}_{1} = \frac{\left[\mathbf{H}_{2}\mathbf{SO}_{3}\right]}{\left[\mathbf{SO}_{2}\right] \cdot \left[\mathbf{H}_{2}\mathbf{O}\right]}$$
(2)

$$K_{2} = \frac{\left[H^{+}\right] \cdot \left[HSO_{3}^{-}\right]}{\left[H_{2}SO_{3}\right]}$$
(3)

$$K_{3} = \frac{\left[H^{+}\right] \cdot \left[SO_{3}^{2-}\right]}{\left[HSO_{3}^{-}\right]}$$
(4)

where: $[SO_2]$ is the physically absorbed sulfur dioxide concentration;

 $[\mathrm{H_2SO_3}]$ - the chemically absorbed sulfur dioxide concentration;

[HSO₃] - concentration of ions resulting from the first step of H₂SO₃ dissociation;

 $[SO_3^{2^2}]$ - concentration of ions resulting from the second step of H_2SO_3 dissociation;

[H⁺] - hydrogen ion concentration;

[H₂O] - water concentration.

The equilibrium of SO₂ - H_2O system may be appreciated using the equation [12]:

$$\mathbf{p}_{\mathrm{SO}_{2(e)}} = \mathrm{H}\left\{ \left[\mathrm{SO}_{2} \right] \cdot \left[\mathrm{H}_{2} \mathrm{SO}_{3} \right] \right\}$$
(5)

^{*} email: c_modrogan@yahoo.com

where: $\boldsymbol{p}_{_{SO2\,(e)}}$ represents the equilibrium pressure of sulfur dioxide,

H - Henry constant.

The equation (5) can be transformed in a more explicit form:

$$\mathbf{p}_{SO_{2}(\bullet)} = \mathrm{HS} \cdot \frac{1 + K_{1}}{K_{1}} \cdot \frac{\left[\mathrm{H}^{+}\right]^{2}}{\left[\mathrm{H}^{+}\right]^{2} + K_{2} \cdot \left[\mathrm{H}^{+}\right] + K_{2} \cdot K_{3}} \quad (6)$$

where S represents the sum of chemisorbed species:

and

 \mathbf{K}_{1} is the ratio between chemically and physically absorbed species:

$$\mathbf{K}_{1} = \mathbf{K}_{1} \cdot \left[\mathbf{H}_{2}\mathbf{O}\right] = \frac{\left[\mathbf{H}_{2}\mathbf{SO}_{3}\right]}{\left[\mathbf{SO}_{2}\right]}$$
(8)

 $\mathbf{S} = \begin{bmatrix} \mathbf{H}_2 \mathbf{SO}_3 \end{bmatrix} + \begin{bmatrix} \mathbf{HSO}_3^{-} \end{bmatrix} + \begin{bmatrix} \mathbf{SO}_3^{2-} \end{bmatrix}$ (7)

Equation (2) highlights the equilibrium concentration of physically absorbed sulfur dioxide:

$$\left[SO_{2}\right] = \frac{\left[H_{2}SO_{3}\right]}{K_{1}\left[H_{2}O\right]} = \frac{\left[H_{2}SO_{3}\right]}{K_{1}} \qquad (9)$$

Combining equations (5) and (9) one obtain:

$$p_{SO_2} = H\left\{\frac{\left[H_2SO_3\right]}{K_1} + \left[H_2SO_3\right]\right\} = H\left\{\left[H_2SO_3\right] \cdot \frac{1 + K_1}{K_1}\right\} (10)$$

The concentration of chemisorbed species $[H_2SO_3]$ can be expressed, combining the relations (3), (4) and (7):

$$\left[\mathrm{H}_{2}\mathrm{SO}_{3}\right] = \mathrm{S} \cdot \frac{\left[\mathrm{H}^{+}\right]}{\left[\mathrm{H}^{+}\right]^{2} + \mathrm{K}_{2}\left[\mathrm{H}^{+}\right] + \mathrm{K}_{2} \cdot \mathrm{K}_{3}}$$
(11)

By substituting the equation (11) in (10) we obtain the equation (6). The equilibrium constants $K_2 = 1.7 \times 10^2$ and $K_3 = 6.2 \times 10^8$ from equation (6) have the significance of ionization constants, indicating the H₂SO₃ strength [11]. The low values of ionization constants K₂ and K₃ are indicating the weak character of sulfurous acid (H₂SO₃). Both constants can be used in calculating the proton concentration after the first and the second ionization step, according to equations:

$$\left[\mathbf{H}^{+}\right]_{1} = \sqrt{\mathbf{K}_{2} \left[\mathbf{C}\right]} \tag{12}$$

$$\left[H^{+}\right]_{2} = \sqrt{K_{3} \left[C\right]}$$
(13)

where: [H⁺]₁ represents the proton concentration after the first step of ionization;

 $[H^+]_2^-$ the proton concentration after the second step of ionization;

[C] - the total sulfur dioxide concentration in water.

Considering the equation (6) one can see the correlation between SO_2 equilibrium pressure, the solution *p*H and

temperature (K₂ and K₃ are functions of temperature). This dependence can be put in evidence experimentally.

Experimental part

The absorbtion of SO₂ in water was experimented in a device presented in figure 1 [16]. It contains a SO₂ measurement vessel (1) having the volume V, an absorption vessel (2) whose volume is v, a mercury manometer (3) and a water manometer (4). The mercury manometer is used for high SO₂ concentrations and the water manometer for low SO₂ concentrations. The order of operations is the following: by slowly opening the tap (8) a vacuum (Δh_1) is made in the vessel (1). Then closing the tap (8) and opening the tap (5) pure SO₂ is introduced, establishing the initial pressure. Closing the tap (5) and opening the tap (9) the communication between the vessel (1) and (2) is established, permitting the SO₂ absorption in the absorbent contained in the vessel (2) till the equilibrium is attained. The SO₂ absorption determines the creation of a vacuum (Δh_2). Knowing Δh_1 and Δh_2 values and the amount of absorbent (g), a point on equilibrium diagram can be represented.

Let's consider the following example. The volume V = 370 cm^3 , v = 30 cm^3 , $\Delta h_1 = 300 \text{ mm Hg}$, $\Delta h_2 = 53 \text{ mm Hg}$.

Fig. 1. Experimental device for water-SO₂ equilibrium study 1 - thermostated vessel; 2 -thermostated absorption vessel; 3 - mercury manometer; 4 -water manometer; 5, 6, 7, 8, 9, 10 -taps [16]

In these conditions the SO_2 volume V_T introduced in the vessel (1) is:

$$V_{T} = V \cdot \frac{\Delta h_{1}}{P_{T}} = 370 \cdot \frac{300}{760} = 146 \text{ cm}^{3}$$

where \mathbf{P}_{T} is the total pressure (for example the atmospheric one).

The absorbed SO₂ volume is v_{abs}

$$v_{abs} = (V + v) \cdot \frac{\Delta h_2}{P_{T}} = (370 + 30) \cdot \frac{53}{760} = 27.9 \text{ cm}^3$$

The non-absorbed SO₂ volume v_r is

 $v_r = V_T - v_{abs} = 146 - 27.9 = 118.1 \text{ cm}^3$ The equilibrium SO₂ pressure Δh_e is:

$$\Delta h_{e} = p_{e} = \Delta h_{1} \cdot \frac{V}{V + v} - \Delta h_{2} =$$
$$= 300 \cdot \frac{370}{370 + 30} - 53 = 225 \text{ mm Hg}$$

Knowing the amount of absorbent $g = 3g H_2O$, the SO₂ concentration C_{SO2} can be calculated (in $g SO_2/1000 g H_2O$) as follows:

$$C_{so_2} = \frac{27.9[cm^3]}{22400[cm^3 / mol]} \cdot 64\left[\frac{g \,\text{SO}_2}{\text{mol}}\right] \cdot \frac{1000}{3} = 26.5[g \,\text{SO}_2 / 1000 \,\text{g} \,\text{H}_2 O]$$

Results and discussions

The experimental method permits to determine the following equluilibrium curves:

1) The dependence of sulfur dioxid concentration in liquide phase, C_{so2} [mol/L] on sulfur dioxid partial pressure, p_{so2} [mm Hg] at different water salinity S [g/L] (fig. 2) and 2) The dependence of sulfur dioxid concentration in

liquide phase C_{SO2} [mol/L] on water salinity S [g/L]. (fig. 3) From the figure 2 one can see that the SO₂ cnceentration

in liquide phase is decreasing when the salinity S is increasing. This dependence results also from the figure 2. The knowing of these dependences permits to establish tha SO, pollution in different conditions.

The results obtained are presented in figure 3 as a equilibrium diagramme between the solubility of water S [g/L] and SO₂ concentration C_{SO2} [mol/L]. The variation of marine solubility from 10 g/L to 40 g/L determines the

Fig. 3. The dependence of SO_2 concnetration in liquide phase, C_{sop} , [mol/L] on water salinity, S [g/L]

variation of SO, concentration in water from 2.6 mol/L to about 3.2 mol/L. In consequence, the variation of water salinity in these limits can detemine a quite big difference of water pollution.

Conclusions

The study reveals a big influence of salinity of water on SO, concentration in water, showing that even at big salinity (40 g/L) the concentration is big enough to create the conditions for natural waters acidification. The SO concentration determined by SO, absorption from polluting gases can attain 26.5 g/1000 g water. This concentration is quite low for water acidification because of weak character of H₂SO₂ resulting from SO₂ absorption. Unfortunately in natural waters there are favorable conditions for SO₂ oxidation, conducting finally to H₂SO₄ formation. Only 0.5 H₂ SO₄ g/1000g H₂O can determine the value of water pH about 3, damaging the fauna and flora. In order to put in evidence the influence of SO, partial pressure and temperature on SO, concentration in water, equilibrium diagrams have been determined. These diagrams can be also used to design SO, absorption devices.

Acknowledgment: This work has been funded by University Politehnica of Bucharest, through the Excellence Research Grants"Program, UPB -GEX 2017. Identifier: UPB- GEX2017, Ctr. No. 78/2017 Cod 136.

References

1.DONABUL, A., RILEY, J., J. Chem. Engng. Data, 2a, 1979, 276

2.ORBULET, O.D., PINCOVSCHI, I., MODROGAN, C., Rev. Chim. (Bucharest), 67, no. 5, 2016, p. 829

3.ABDULSATTAR, A.H., SRIDHAR, S., BROMLEY, L.A., AIChE J. (January), 1977, p. 62

4.BROMLEY, L., J. Chem. Thermodyn. 4, 5, 1972, p. 669

5.RABE, A.E., HARRIS, J.F., J. Chem. Eng. Data, 8, 3, 1963, p. 333

6.GARRELS, M.R., CHRIST, C.L., Harper and Row, New York, 1965, p. 450.

7.ANDREASE, A., Mayer, S., 2007, ACS Publication

8.OSLO, A.E., LILLESTRIM,T.A., United State Patent, **4,337,230**, 1982 9.OIKAWA, K., YONGSIRI, C., HARIMOTO, T., Environmental Progress AICHE &Sustainable Energy, **22**, 1, 2003, p. 67

10.RODRIGUEZ-SEVILLA, J., ALVAREZ, M., DIAZ, M.C., MARRERO, M.C., J. Chem. Eng. Data, **49**, 6, 2004, p. 1710

11.MEINRAT, O.A., Marine Chemistry, **30**, 1990, p. 1

12.KUMAR, S.P., J. of Geophysical Reserch, 104, C1, 1999, p. 1455

13.EDUARDO, T., MIYAUCHI, C., LU, Y., FIROOZABADI, A., Society of Petroleum Engineers, SPE-187275-MS, 2017, https://doi.org/10.2118/187275-MS

14.YU, L., JIN, X., JOSEY, S.A., LEE, T., KUMAR, A., WEN, C., XUE, Y., J. of Climate, **30**, 2017, p. 3829

15.HARRIS, C., MCCLELLAND, W., CONNELLY, T.L., CRUMP, B.C., DUNTON, K.H., Estuarin and Coasts, **40**, 1, 2017, p. 50

16.PINCOVSCHI, I., STEFAN, S.D., Rev. Chim (Bucharest), 64, no. 9, 2013, p. 1021

17.DRAGAN, G., Rev. Chim (Bucharest), 61, no. 9, 2010, p. 897

18.AXENTE, D., BALLA, A., MARCU, C., Rev. Chim (Bucharest), 67, no. 8, 2016, p.1551

19.STANCU, A., CALIN, C., PANTEA O., ENE, C., Rev. Chim (Bucharest), 66, no. 6, 2015, p. 778

Manuscript received: 14.06.2018